

FXCM Java API

 Building a strategy

 By Valeri Chakarov

This tutorial is the second part of the FXM Java API tutorials series. It is tightly connected to the piece of
software developed in the first part named Pulling Historical Prices. In the following paragraphs I am going
to explain how to build a strategy that is based on one of the most popular indicators in technical analysis –
the CCI Indicator. The prerequisites for this tutorial include a fundamental to intermediate understanding
of the Java language, knowledge of object-oriented concepts and principles, and having a basic idea of how
financial markets and trading works.

In this document, I am going to explain thoroughly each part of the strategy in a very understandable way.
In addition, at the end of the tutorial I am going to add an Appendix and place all the source code discussed
in this tutorial. Both of these will be help you take a solid grasp of how to build a strategy. Have fun coding!

Before we start, please take a moment to read the following disclaimer:

Trading foreign exchange on margin carries a high level of risk, and may not be suitable for all investors.
Past performance is not indicative of future results. The high degree of leverage can work against you as
well as for you. Before deciding to invest in foreign exchange you should carefully consider your investment
objectives, level of experience, and risk appetite. The possibility exists that you could sustain a loss of some
or all of your initial investment and therefore you should not invest money that you cannot afford to lose.
You should be aware of all the risks associated with foreign exchange trading, and seek advice from an
independent financial advisor if you have any doubts.

Building a Strategy

Important note: to fully understand the concepts of building and testing a strategy, be sure to also read the
“FXCM Java API - Testing Our Strategy” as they both go hand in hand.

We start by creating an interface called Strategy and have all strategies implement it:

public interface Strategy {
StrategyResult runStrategy(List <Candlestick> candleStickList);
}

Our interface has only one method that we must implement: runStrategy. This method obtains a list of
instances from the Candlesticks class, applies the strategy on the Candlestick’s value and returns an
instance of the StrategyResult class (see “FXCM Java API - Testing Our Strategy” for more details). Using an
interface would later enable us to take advantage of the polymorphism mechanism when we’ll want to see
the results of our strategy’s backtesting.

Our strategy is quite straightforward and falls under the label Range Strategy. This type of strategy is
commonly used when the market trend is unclear and the Range Strategy is a handy tool to have in this
type of situation. This specific type of strategy consists of three stages. The first stage is the process of
finding the range which can be done by establishing the support and resistance zones. The second stage is
related to managing the risk of the strategy and placing the stop loss and the take profit orders close the
support and the resistance levels respectively. The third stage involves using oscillator to time your entry.
In our strategy, the Stochastics Oscillator is chosen. This technical indicator is designed to track price by a
mathematical calculation which causes the indicator to fluctuate around a centerline. Traders usually will
wait for the indicator to reach an extreme as price reaches a zone of support or resistance.

Firstly, we will start by explaining how we have used the stochastics indicator and how we have established
the support and resistance level and in the next Chapter(“Testing the strategy”) we will discuss the risk
management decisions taken for the creation of this strategy.

The Stochastic Oscillator is developed by George C.Lane in the 1950s. It is a momentum indicator that
shows the close relative to the high-low range over a set number of periods. The reason we are interested
in the momentum is because it changes before the price does and helps us in foreshadowing reversals.

Below you can see the formula for calculating the Stochastics Oscillator. For further information, you can
have a look here.

%K = (Current Close - Lowest Low) / (Highest High - Lowest Low) * 100

%D = 3-day SMA of %K

Lowest Low = lowest low for the look-back period

Highest High = highest high for the look-back period

%K is multiplied by 100 to move the decimal point two places

http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:stochastic_oscillator_fast_slow_and_full

In our strategy we will implement the Range Strategy with Stochastics Oscillator by selling the asset when
the Stochastics K coefficient and the Stochastic D coefficient are below the resistance level and buy and the
two coefficients are slightly above the support level. In addition, we will be tracking for crossovers
between the coefficients and where exactly they happen. If it is the case that the crossover happens bellow
the support level, we initiate a buy order and if it occurs above the resistance level, we make a sell order.

For the implementation of our strategy we will create RangeStrategy class:

public class RangeStrategy implements Strategy {

 private static final double stopLoss;
 private static final double takeProfit;
 private static final int supportLevel;
 private static final int resistanceLevel;
 static List<Double> listOfStochasticK = new ArrayList<>();;

 public RangeStrategy(double stopLoss, double takeProfit, int bottomLimit) {

 this.stopLoss = stopLoss;
 this.takeProfit = takeProfit;
 this.supportLevel = supportLevel;
 this.resistanceLevel = 100 - resistanceLevel;
;
}

 //getters goes here...

As you can see we have four fields in this class. The stopLoss and takeProfit define the stop-loss and
take-profit in percentage points. They are marked as final as they will be constant throughout the entire
execution of each backtest but will vary from one backtest to another.

As you can see we have four fields in this class. The stopLoss and takeProfit are declared to be used for
stop-loss and take-profit in percentage format. The supportLevel and resistanceLevel define the limits that
will trigger making an order to buy or sell the currency. Note that the support-resistance level is always
between 0 – 100, so if the Strategy argument passed to the constructor is out of this range, we’ll notify it by
throwing an exception. The mechanism for backtesting a strategy is to first get a hold of historical data of
the specific asset we want to test the strategy on (as we did in “FXCM Java API – Pulling Historical Data”),
and then running the strategy on that data. In our case, before we can run the strategy we must calculate
the CCI for each and every candlestick. To achieve this we will add two static methods in
RangeStrategy.class called calculateStochasticsK and calculateStochasticsD.

public static void calculateStochasticsK(List<CandleStick> candleSticksList, int duration)
{
 double theCurrentClose = 0;
 double theHighestHigh = 0;
 double theLowestLow = 0;
 double stochasticK = 0;
 for (int i = 0; i < candleSticksList.size(); i++) {
 //theCurrentClose
 theCurrentClose = candleSticksList.get(i).getCloseBid();
 //the Lowest Low
 List<Double> allListedLows = new ArrayList<>();
 allListedLows.add(candleSticksList.get(i).getLow());
 theLowestLow = candleSticksList.get(0).getLow();
 if(theLowestLow>candleSticksList.get(i).getLow()) {
 theLowestLow = candleSticksList.get(i).getLow();
 }
 //the Highest High
 theHighestHigh = candleSticksList.get(0).getHigh();
 if(theHighestHigh <candleSticksList.get(i).getHigh()) {
 theHighestHigh = candleSticksList.get(i).getHigh();
 }
 stochasticK = ((theCurrentClose - theLowestLow) / (theHighestHigh -
theLowestLow)) * 100;
 candleSticksList.get(i).setStochasticK(stochasticK);
 }
 }

 public static void calculateStochasticsD(List<CandleStick>candleSticksList, int
duration) {
 int counter = 0;
 List<Double> listOfStochasticD = new ArrayList<>();
 double stochasticD = 0;
 for (int j = 2; j < listOfStochasticsK.size()+1; j++) {
 if(j % 3 == 0) {
 stochasticD = (listOfStochasticsK.get(j-1) +
listOfStochasticsK.get(j-2) + listOfStochasticsK.get(j-3))/3;
 listOfStochasticD.add(stochasticD);
 counter++;
 }
 }
 stochasticD = Utilities.addAllNumbers(listOfStochasticD)/counter;
 for (int i = 0; i < candleSticksList.size(); i++) {
 candleSticksList.get(i).setStochasticD(stochasticD);
 }

 }

calculateStochasticsK method gets two arguments: a list with all of the historical candlesticks of the asset
and a certain period of the trend named as duration. The most typical used duration is 14 candles but for
our strategy we will be using a 20 period window. The calculation of Stochastic K coefficient and Stochastics
D coefficient are based on the formula displayed above. In the first one you take the highest price and the
lowest price for the 20-period window, as well as the current close price. Once we obtain them we perform

the following calculation stochasticK = ((theCurrentClose - theLowestLow) / (theHighestHigh -
theLowestLow)) * 100; The multiplier in the end, which is 100 is to put the result in
percentage form. In addition you create stochasticsK and stochasticsD member fields in
the CandleStick.class so that we can track what is their value in relation to each of
the candlesticks we have in the 20-period time window. The calculateStochasticsD method
takes the average of every three stochasticK values. It is also based on the formula
displayed above.

Again, the new piece here is the setStochasticsK() and the setStochasticsD()method. We are using
them to set the range of each candlestick. You need to add them as member fields in the Candlestick class
(see “FXCM Java API – Pulling Historical Data” for more details) to avoid compiler error. The Candlestick
object we’ve used in the prior module describes a generic candlestick but each strategy may require its
own unique candlestick with different characteristics. As it is the case here.

Ok so now that we have made the proper adjustments to our relevant classes we can easily use the
stochasticsK and the stochasticsD method to calculated the CCI for each candle. The next step is to
implement the logic of our strategy and we are going to do that by overriding the runStrategy method:

@Override
 public StrategyResult runRangeStrategyWithStochastics(List<CandleStick>
candleSticksList) {
 double entryBuy;
 double entrySell;
 double stopLossPrice=0;
 double takeProfitPrice=0;
 double strategyProfit=0;
 double maxProfit=0;
 double maxDrawdown=0;
 boolean isOpenPosition=false;
 int winCounter=0;
 int lossCounter=0;

 for (int i = 250; i < candleSticksList.size(); i++) {

 if(isOpenPosition) {
 if(stopLossPrice<takeProfitPrice) {
 if(candleSticksList.get(i).getLow()<stopLossPrice)
{
 isOpenPosition=false;
 lossCounter++;
 strategyProfit-=stopLoss;
 maxDrawdown=calculateMaxDrawdown(maxProfit,
strategyProfit, maxDrawdown);
 }else
if(candleSticksList.get(i).getHigh()>takeProfitPrice) {
 isOpenPosition=false;
 winCounter++;
 strategyProfit+=takeProfit;

 maxProfit=updateMaxProfit(strategyProfit,maxProfit);

}
 }else {

 if(candleSticksList.get(i).getHigh()>stopLossPrice) {
 isOpenPosition=false;
 lossCounter++;
 strategyProfit-=stopLoss;
 }else
if(candleSticksList.get(i).getHigh()>stopLossPrice) {
 isOpenPosition=false;
 winCounter++;
 strategyProfit+=takeProfit;
 maxProfit=updateMaxProfit(strategyProfit,
maxProfit);
 }
 }

 }else if(candleSticksList.get(i).getStochasticK()>supportLevel
&& candleSticksList.get(i).getStochasticK()>supportLevel) {
 entryBuy=candleSticksList.get(i).getCloseAsk();
 stopLossPrice= ((1-stopLoss)*entryBuy);
 takeProfitPrice = ((1+takeProfit)*entryBuy);
 isOpenPosition=true;
 }else
if(candleSticksList.get(i).getStochasticK()<resistanceLevel &&
candleSticksList.get(i).getStochasticD()<resistanceLevel) {
 entrySell=candleSticksList.get(i).getCloseBid();
 stopLossPrice=((1+stopLoss)*entrySell);
 takeProfitPrice=((1-takeProfit)*entrySell);
 isOpenPosition=true;
 }else if(candleSticksList.get(i).getStochasticK() ==
candleSticksList.get(i).getStochasticD()){
 entryBuy=candleSticksList.get(i).getCloseAsk();
 stopLossPrice= ((1-stopLoss)*entryBuy);
 takeProfitPrice = ((1+takeProfit)*entryBuy);
 isOpenPosition=true;
 }else if(candleSticksList.get(i).getStochasticK() ==
candleSticksList.get(i).getStochasticD() &&
candleSticksList.get(i).getStochasticK()<supportLevel &&
candleSticksList.get(i).getStochasticD()<supportLevel){
 entryBuy=candleSticksList.get(i).getCloseAsk();
 stopLossPrice= ((1-stopLoss)*entryBuy);
 takeProfitPrice = ((1+takeProfit)*entryBuy);
 isOpenPosition=true;
 }else if(candleSticksList.get(i).getStochasticK() ==
candleSticksList.get(i).getStochasticD() &&
candleSticksList.get(i).getStochasticK()>supportLevel &&
candleSticksList.get(i).getStochasticD()>supportLevel){
 entrySell=candleSticksList.get(i).getCloseBid();
 stopLossPrice=((1+stopLoss)*entrySell);
 takeProfitPrice=((1-takeProfit)*entrySell);
 isOpenPosition=true;

 }else
if(candleSticksList.get(i).getStochasticK()<supportLevel){
 entryBuy=candleSticksList.get(i).getCloseAsk();
 stopLossPrice=((1-stopLoss)*entryBuy);
 takeProfitPrice=((1+takeProfit)*entryBuy);
 isOpenPosition=true;
 }else
if(candleSticksList.get(i).getStochasticK()>resistanceLevel){
 entrySell=candleSticksList.get(i).getCloseBid ();
 stopLossPrice=((1+stopLoss)*entrySell);
 takeProfitPrice=((1-takeProfit)*entrySell);
 isOpenPosition=true;
 }
 }
 StrategyResult sr = new StrategyResult(strategyProfit, maxProfit,
maxDrawdown, winCounter, lossCounter, this);
 return sr;
 }

Key notes for the logic of the strategy:

There are only 3 possible states at any given moment during the time of the strategy execution: either we
have 1 open long position, 1 open short position or no open positions at all. There cannot be a situation
where we have more than 1 open position.

The runStrategy method goes through the entire list of candlesticks and checks whether there is an open
position. If there is, we need to check if we got stopped-out or if our profit target got hit. If there isn’t, it
means that we can open a new position provided that the asset’s stochasticsK and stochasticsD values are
lower/higher than the floor/ceiling we defined when we instantiated the CCIIndicatorStrategy class. We set
the stop-loss and take-profit immediately after we open a new position.
The price we use for opening a position is the appropriate closing price based on the side of the position:
buy at ask and sell at bid. It is consistent with the calculation of the Range Strategy which is based on the
closing prices of the relevant asset. It also means that our assumption at the core of the strategy is that we
can open a trade only at the end of each candle’s time interval (1 minute in our case). Obviously this
assumption helps simplify the backtesting process as we are limited to the data that each candlestick has,
which sometimes doesn’t tell the all story. In other words, there are times when the RSI breaches our floor
or ceiling during the candle’s time interval, but we cannot know the exact time it happened or the exact
price of the asset at that time. We are limited to the open, close, low, high of each time interval. The
bottom line is this: if we are consistent with the principals used for backtesting the strategy, when running
the strategy on real time data, we can expect the results would be somewhat similar. But if we deviate
from those principals, the results can vary considerably.
You’ve probably noticed that the for loop at the heart of runStrategy starts from 250 which looks a bit
odd. The reason for this is to minimize errors in time of high volatility at first calculations as it takes time for
the smoothing process to kick in. Therefore, it’s considered good practice to use a minimum of 250 data
points prior to the starting time of our backtesting.
The runStrategy method returns a StrategyResult instance with all of the relevant arguments (profit,
maximum drawdown, etc.) plus an instance of the RsiSignals itself. We use it to analyze the results of each
backtest, as we will see in the next section: “FXCM Java API – Testing Our Strategy”.

Below is a full list of the classes we’ve used in this tutorial:
Strategy.java:

public interface Strategy {
StrategyResult runStrategy(List <Candlestick> candleStickList);
}

RangeSrategy.class

public class RangeStrategy implements Strategy {

 private double stopLoss;
 private double takeProfit;
 private int supportLevel;
 private int resistanceLevel;
 static List<Double> listOfStochasticsK = new ArrayList<>();

 public RangeStrategy(double stopLoss, double takeProfit, int bottomLimit) {
 this.stopLoss = stopLoss;
 this.takeProfit = takeProfit;
 this.supportLevel = supportLevel;
 this.resistanceLevel = 100 - resistanceLevel;
 }

 public RangeStrategy() {
 // TODO Auto-generated constructor stub
 }

 public double getStopLoss() {
 return stopLoss;
 }

 public void setStopLoss(double stopLoss) {
 this.stopLoss = stopLoss;
 }

 public double getTakeProfit() {
 return takeProfit;
 }

 public void setTakeProfit(double takeProfit) {
 this.takeProfit = takeProfit;
 }

 public int getBottomLimit() {
 return supportLevel;
 }

 public void setBottomLimit(int bottomLimit) {
 this.supportLevel = bottomLimit;
 }

 public int getUpperLimit() {

 //the implementation of the class continues here…..

return resistanceLevel;
 }

 public void setUpperLimit(int upperLimit) {
 this.resistanceLevel = upperLimit;
 }

 public static void calculateStochasticsK(List<CandleStick> candleSticksList, int
duration) {
 double theCurrentClose = 0;
 double theHighestHigh = 0;
 double theLowestLow = 0;
 double stochasticK = 0;
 for (int i = 0; i < candleSticksList.size(); i++) {
 //theCurrentClose
 theCurrentClose = candleSticksList.get(i).getCloseBid();
 //the Lowest Low
 List<Double> allListedLows = new ArrayList<>();
 allListedLows.add(candleSticksList.get(i).getLow());
 theLowestLow = candleSticksList.get(0).getLow();
 if(theLowestLow>candleSticksList.get(i).getLow()) {
 theLowestLow = candleSticksList.get(i).getLow();
 }
 //the Highest High
 theHighestHigh = candleSticksList.get(0).getHigh();
 if(theHighestHigh <candleSticksList.get(i).getHigh()) {
 theHighestHigh = candleSticksList.get(i).getHigh();
 }
 stochasticK = ((theCurrentClose - theLowestLow) / (theHighestHigh -
theLowestLow)) * 100;
 candleSticksList.get(i).setStochasticK(stochasticK);
 }
 }

 public static void calculateStochasticsD(List<CandleStick>candleSticksList, int
duration) {
 int counter = 0;
 List<Double> listOfStochasticD = new ArrayList<>();
 double stochasticD = 0;
 for (int j = 2; j < listOfStochasticsK.size()+1; j++) {
 if(j % 3 == 0) {
 stochasticD = (listOfStochasticsK.get(j-1) +
listOfStochasticsK.get(j-2) + listOfStochasticsK.get(j-3))/3;
 listOfStochasticD.add(stochasticD);
 counter++;
 }
 }
 stochasticD = Utilities.addAllNumbers(listOfStochasticD)/counter;
 for (int i = 0; i < candleSticksList.size(); i++) {
 candleSticksList.get(i).setStochasticD(stochasticD);
 }
 }

 //the implementation of the class continues here…..
 @Override
 public StrategyResult runRangeStrategyWithStochastics(List<CandleStick>
candleSticksList) {
 double entryBuy;
 double entrySell;
 double stopLossPrice=0;
 double takeProfitPrice=0;
 double strategyProfit=0;
 double maxProfit=0;
 double maxDrawdown=0;
 boolean isOpenPosition=false;
 int winCounter=0;
 int lossCounter=0;

 for (int i = 250; i < candleSticksList.size(); i++) {

 if(isOpenPosition) {
 if(stopLossPrice<takeProfitPrice) {
 if(candleSticksList.get(i).getLow()<stopLossPrice) {
 isOpenPosition=false;
 lossCounter++;
 strategyProfit-=stopLoss;
 maxDrawdown=calculateMaxDrawdown(maxProfit,
strategyProfit, maxDrawdown);
 }else if(candleSticksList.get(i).getHigh()>takeProfitPrice) {
 isOpenPosition=false;
 winCounter++;
 strategyProfit+=takeProfit;
 maxProfit=updateMaxProfit(strategyProfit,maxProfit);
 }
 }else {
 if(candleSticksList.get(i).getHigh()>stopLossPrice) {
 isOpenPosition=false;
 lossCounter++;
 strategyProfit-=stopLoss;
 }else if(candleSticksList.get(i).getHigh()>stopLossPrice) {
 isOpenPosition=false;
 winCounter++;
 strategyProfit+=takeProfit;
 maxProfit=updateMaxProfit(strategyProfit, maxProfit);
 }
 }
 }else if(candleSticksList.get(i).getStochasticK()>supportLevel &&
candleSticksList.get(i).getStochasticK()>supportLevel) {
 entryBuy=candleSticksList.get(i).getCloseAsk();
 stopLossPrice= ((1-stopLoss)*entryBuy);
 takeProfitPrice = ((1+takeProfit)*entryBuy);
 isOpenPosition=true;
 }else if(candleSticksList.get(i).getStochasticK()<resistanceLevel &&
candleSticksList.get(i).getStochasticD()<resistanceLevel) {
 entrySell=candleSticksList.get(i).getCloseBid();
 stopLossPrice=((1+stopLoss)*entrySell);
 //the implementation of the class continues here…..
 takeProfitPrice=((1-takeProfit)*entrySell);

 isOpenPosition=true;
 }else if(candleSticksList.get(i).getStochasticK() ==
candleSticksList.get(i).getStochasticD()){
 entryBuy=candleSticksList.get(i).getCloseAsk();
 stopLossPrice= ((1-stopLoss)*entryBuy);
 takeProfitPrice = ((1+takeProfit)*entryBuy);
 isOpenPosition=true;
 }else if(candleSticksList.get(i).getStochasticK() ==
candleSticksList.get(i).getStochasticD() &&
candleSticksList.get(i).getStochasticK()<supportLevel &&
candleSticksList.get(i).getStochasticD()<supportLevel){
 entryBuy=candleSticksList.get(i).getCloseAsk();
 stopLossPrice= ((1-stopLoss)*entryBuy);
 takeProfitPrice = ((1+takeProfit)*entryBuy);
 isOpenPosition=true;
 }else if(candleSticksList.get(i).getStochasticK() ==
candleSticksList.get(i).getStochasticD() &&
candleSticksList.get(i).getStochasticK()>supportLevel &&
candleSticksList.get(i).getStochasticD()>supportLevel){
 entrySell=candleSticksList.get(i).getCloseBid();
 stopLossPrice=((1+stopLoss)*entrySell);
 takeProfitPrice=((1-takeProfit)*entrySell);
 isOpenPosition=true;
 }else if(candleSticksList.get(i).getStochasticK()<supportLevel){
 entryBuy=candleSticksList.get(i).getCloseAsk();
 stopLossPrice=((1-stopLoss)*entryBuy);
 takeProfitPrice=((1+takeProfit)*entryBuy);
 isOpenPosition=true;
 }else if(candleSticksList.get(i).getStochasticK()>resistanceLevel){
 entrySell=candleSticksList.get(i).getCloseBid ();
 stopLossPrice=((1+stopLoss)*entrySell);
 takeProfitPrice=((1-takeProfit)*entrySell);
 isOpenPosition=true;
 }
 }
 StrategyResult sr = new StrategyResult(strategyProfit, maxProfit, maxDrawdown,
winCounter, lossCounter, this);
 return sr;
 }
 private static double updateMaxProfit(double strategyProfit, double maxProfit) {
 if(strategyProfit>maxProfit) {
 maxProfit=strategyProfit;
 }
 return maxProfit;
 }
 private static double calculateMaxDrawdown(double maxProfit, double strategyProfit,
double maxDrawdown) {
 double currentDrawdown = ((1+strategyProfit)-(1+maxProfit))/(1+maxProfit);
 if(currentDrawdown<maxDrawdown) {
 maxDrawdown=currentDrawdown;
 }
 return maxDrawdown;
 }

}

